

Recent developments in microwave filters based on GaN/Si SAW resonators, operating at frequencies above 5 GHz

Alina-Cristina BUNEA¹, Dan NECULOIU¹, Adrian DINESCU¹, Leo Arij FARHAT²

¹National Institute for R&D in Microtechnologies – IMT Bucharest

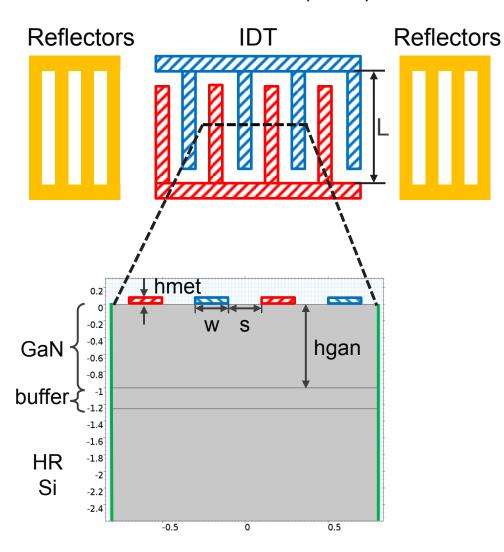
²ESTEC, ESA

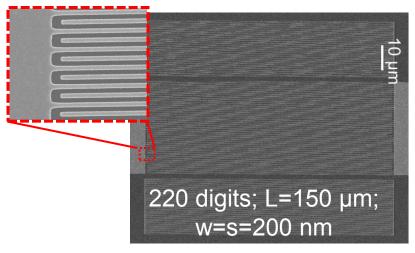
alina.bunea@imt.ro

- □Introduction □
- □ Design of SAW-BPF
- □ Fabrication and characterization
- □Thermal stability analysis
- **□**Conclusions & Future developments

□Introduction □

- □ Design of SAW-BPF
- □ Fabrication and characterization
- **□**Thermal stability analysis
- **□**Conclusions & Future developments



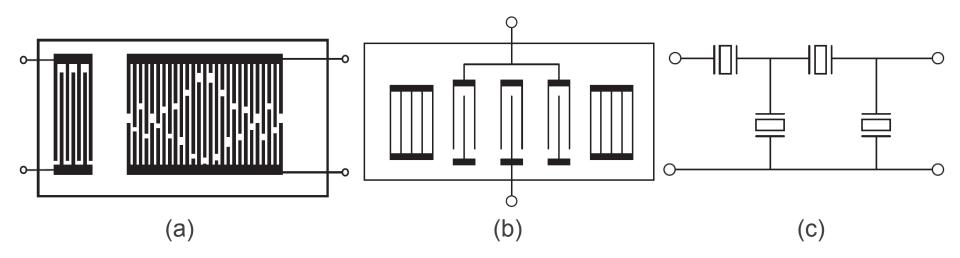

- "Microwave filters based on GaN/Si SAW resonators, operating at frequencies above 5 GHz" (ESA project No. 40000115202/15/NL/CBi)
- Main project objectives: design, fabrication and characterization of monolithic integrated band pass filters processed on GaN/Si, operating at >5 GHz
 - IDTs with digit/interdigit widths below 200 nm
 - use of multiple SAW-Rs integrated monolithically with printed inductors (connected in series or in parallel)

Introduction

Surface Acoustic Wave (SAW) resonator

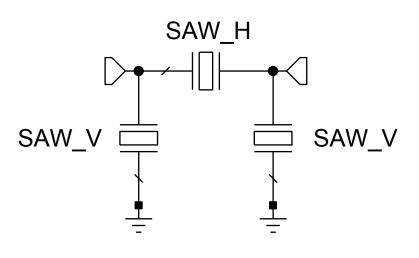
Custom grown wafer specifications

	NTT-AT Japan
Si Wafer resistivity	>6000 Ohm·cm
Si Wafer thickness	$500\!\pm\!25\mu m$
Si orientation	(111)±0.1°
Si wafer diameter	3" (76.2 mm)
Wafer bow	<30 µm
Buffer thickness	300 nm
Buffer content	AIN
GaN thickness	1 µm


- □Introduction □
- □Design of SAW-BPF
- □ Fabrication and characterization
- **□**Thermal stability analysis
- **□**Conclusions & Future developments

Design procedure – Filter topologies

SAW Bandpass Filters:

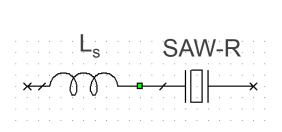

- a) Delay line type filters: high propagation losses
- b) Longitudinally-Coupled Resonator filter: difficult to implement in CoPlanar Waveguide topology
- c) Impedance Element Filters (ladder filters): performances limited by the SAW resonators parameters

Impedance Element Filter in PI topology

Selected filter configuration using Impedance Element Filter approach:

PI type configuration

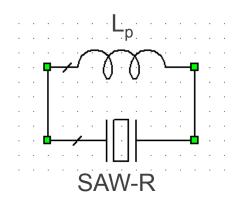
The SAW-R components were selected for a resonance frequency around 5.5 GHz, corresponding to digit/interdigit widths of 200 nm.


$$f_{s,SAW} = f_0 = f_{p,SAW}$$

$$f_{p,SAW_H} = f_{c2} > f_0$$
 $f_{s,SAW_V} = f_{c1} < f_0$

Design procedure – Analytic design

Effect of a series inductor $L_S \ll L_m$: same f_p , but:



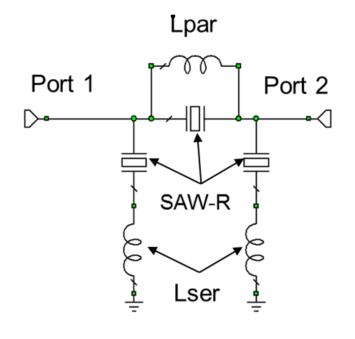
$$\omega^{4} + \left(\frac{1}{L_{s}C_{0}} - \omega_{p}^{2}\right)\omega^{2} - \frac{\omega_{p}^{2}}{L_{ser}C_{0}} = 0$$

$$\left(\omega_{p}^{2} - \frac{1}{L_{s}C_{0}}\right) \pm \sqrt{\left(\frac{1}{L_{s}C_{0}} - \omega_{p}^{2}\right)^{2} + 4\frac{\omega_{p}^{2}}{L_{s}C_{0}}}$$

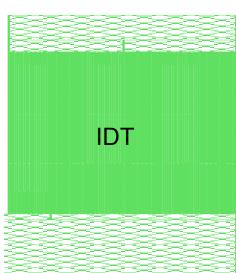
$$(\omega_{s}^{\prime})^{2} \simeq \frac{2}{2}$$

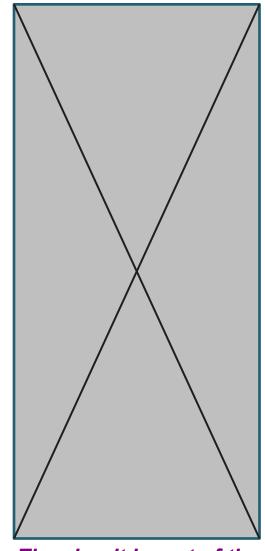
Effect of a parallel inductor $L_P \ll L_m$: same f_s but:

$$\omega^{4} - \omega_{p}^{2} \omega^{2} (1 - \eta) + \eta \omega_{s}^{2} \omega_{p}^{2} = 0$$

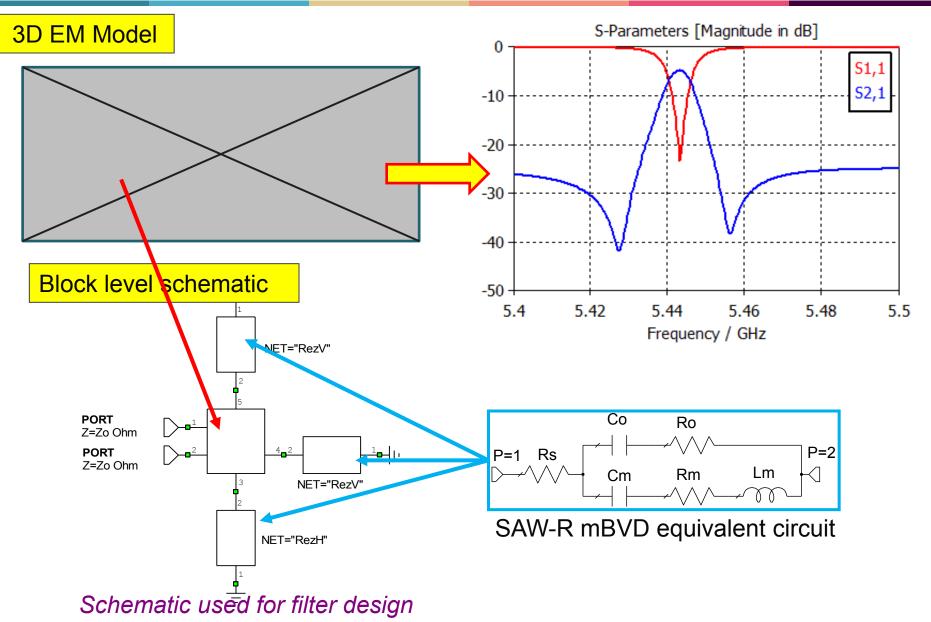

$$\eta = \frac{L_{m}}{L_{p} (1 + L_{m} C_{0} \omega_{s}^{2})}$$

$$(\omega_{p}^{'})^{2} \simeq \frac{1}{2} \omega_{p}^{2} \left[(1 - \eta) \pm \sqrt{(1 - \eta)^{2} - 4\eta \frac{\omega_{s}^{2}}{\omega_{p}^{2}}} \right]$$

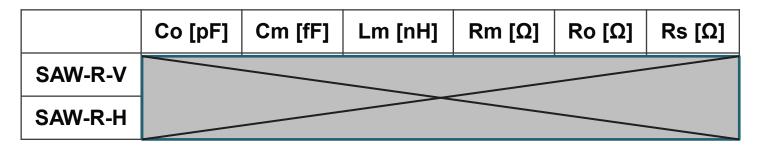

(© 2018 IEEE. D. Neculoiu et al., IEEE ACCESS, Vol. 6, DOI: 10.1109/ACCESS.2018.2867456)

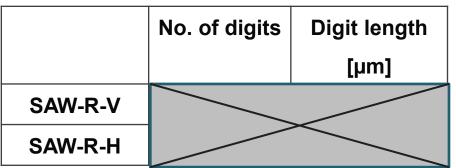

Band Pass Filter in PI configuration

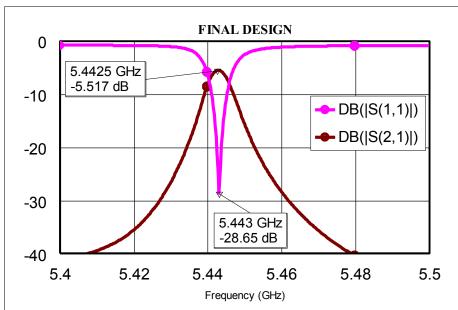
Digit/interdigit widths=200 nm


- □ very compact of only 3x0.8 mm²
- the series printed inductors have a width of 20 μm
- \Box input/output CPW lines have the gap-signal-gap widths of 50-100-50 μm, for a characteristic impedance of ~50Ω

The circuit layout of the BPF in PI configuration


Co-simulation approach for filter design

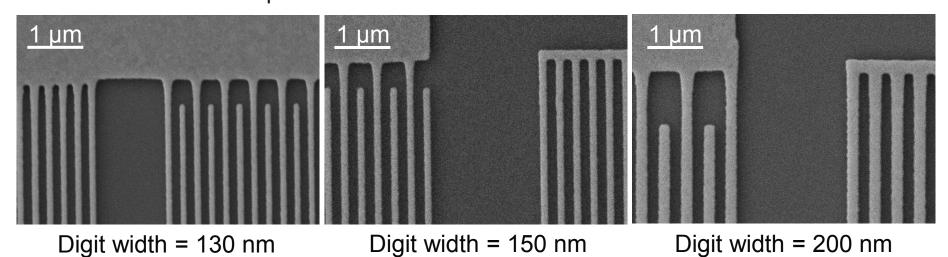



Band Pass Filter in PI configuration

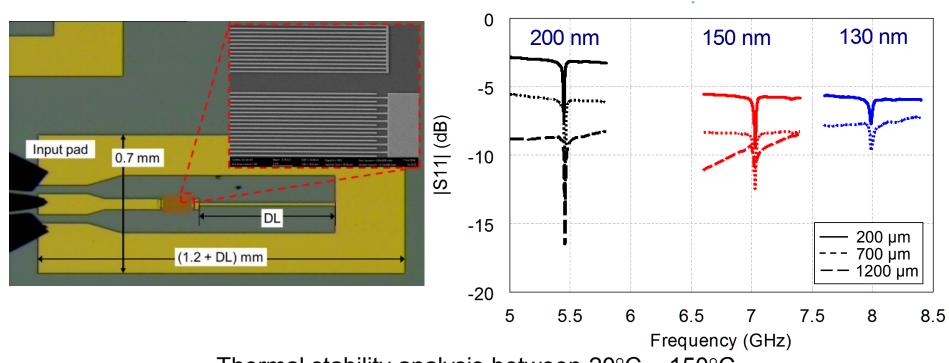
Equivalent circuit parameters for the vertical (V) and the horizontal (H) SAW-R

Layout parameters for the vertical (V) and the horizontal (H) SAW-R

Simulation results for the PI configuration BPF

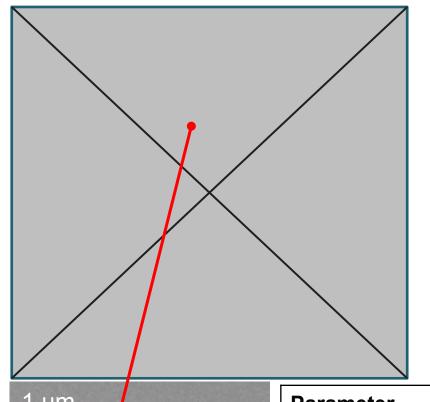


- □ Introduction
- □Design of SAW-BPF
- □ Fabrication and characterization
- **□**Thermal stability analysis
- **□**Conclusions & Future developments

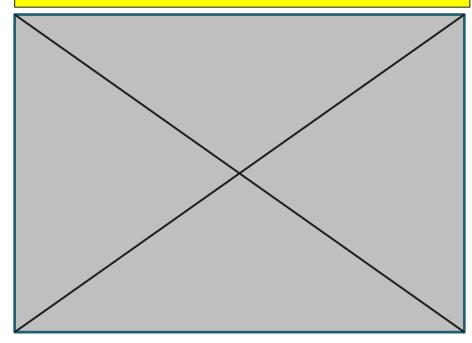

Fabrication of SAW-Rs operating > 5 GHz

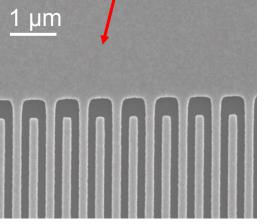
- SAW-R on GaN/Si for frequencies beyond 5 GHz
 - IDTs with digit/interdigit widths below 300 nm
 - nanolithographic patterning of the IDTs
 - writing field limited to a maximum of 100x100 μm² to avoid the negative charging and stitching effects
- e-beam lithography
 - maskless lithography technique; dedicated EBL machine Raith e-Line; electron resist PMMA 950k A4
- metal layers deposited using a highly directional e-beam evaporation equipment (Temescal FC 2000)
 - favors the lift-off process -> neat lines without side walls

Test structures


Thermal stability analysis between 20°C – 150°C

	DL = 0.2 mm		DL = 0.7 mm		DL = 1.2 mm	
Pitch	fres @ 20°C	TCF [ppm/°C]	fres @ 20°C	TCF [ppm/°C]	fres @ 20°C	TCF [ppm/°C]
	[GHz]		[GHz]		[GHz]	
0.4 µm	5.4485	NA	5.4585	-43.72	5.4565	-43.25
0.3 µm	7.0285	-41.66	7.0265	-40.47	7.0255	-39.88
0.26 µm	7.9865	-43.23	7.9895	-42.7	NA	NA

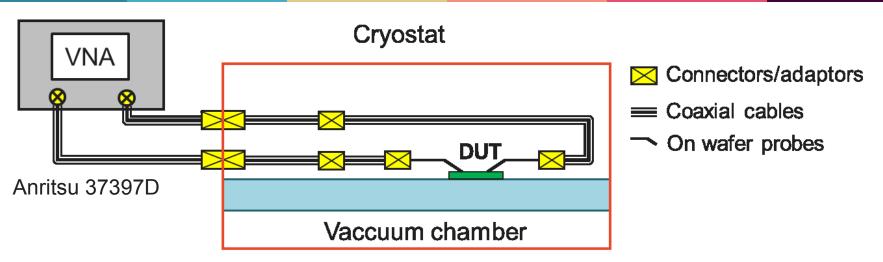

(© 2017 IEEE. Reprinted, with permission, from A. C. Bunea et al., IEEE APMC 2017)

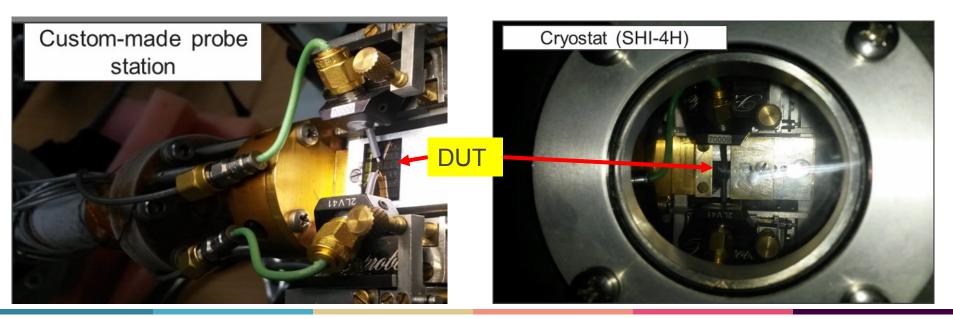


Measurement results for the PI-type filter

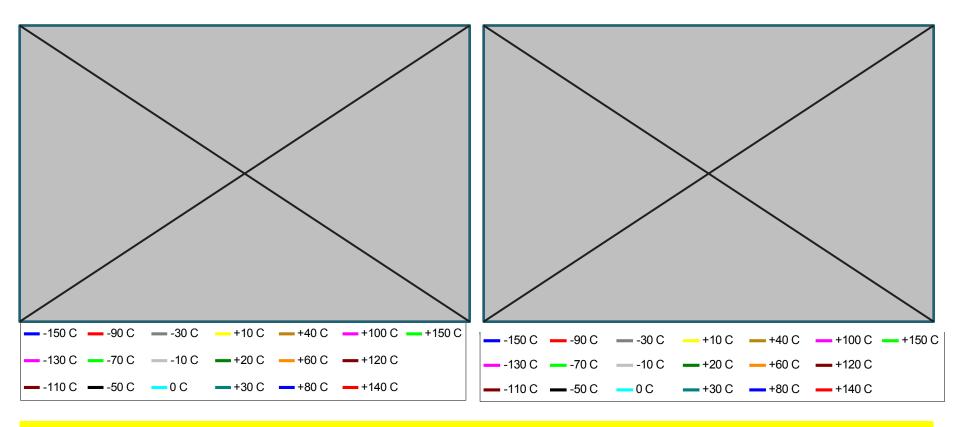
Measurement vs. simulation

Parameter	Re-simulated	Measured
Insertion losses	10.5 dB	10.3 dB
Return loss	8.6 dB	9.2 dB
Out of band rejection	~22 dB	~20 dB
-3dB bandwidth	8.3 MHz	10 MHz
Central frequency	5.506 GHz	5.5 GHz




- □Introduction
- □Design of SAW-BPF
- □ Fabrication and characterization
- □Thermal stability analysis
- **□**Conclusions & Future developments

Measurement setup for thermal analysis



In-house developed on-wafer measurement setup used to record S parameter measurements at different temperatures

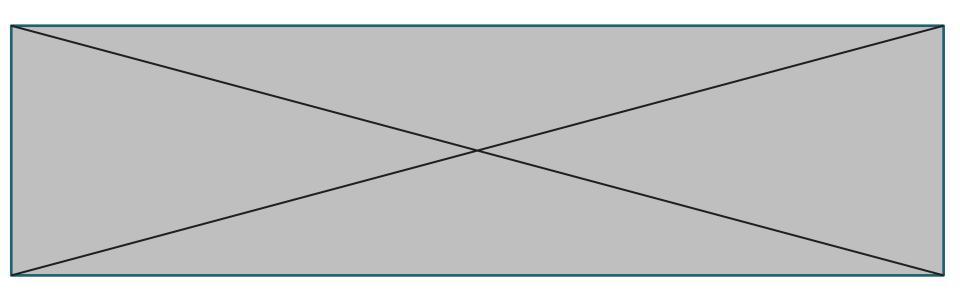
Thermal stability analysis -150...+150°C

- General shape of the frequency response is preserved
- Filter selectivity becomes worse with the temperature increase

- □ Introduction
- □Design of SAW-BPF
- □ Fabrication and characterization
- **□**Thermal stability analysis
- **□**Conclusions & Future developments

Results vs. SotA

BPF	Deculto	SAW-BPF SotA			
Parameter	Results	[1]	[2]	[3]	[4]
Insertion losses	10.3 dB	25.5 dB/ 24.4 dB	14 dB	27 dB/ 35 dB	33 dB
Return loss	9.2 dB	N.A.	N.A.	N.A.	0.4 dB
Out of band rejection	20 dB	~35 dB	15 dB	23 dB/ 15 dB	10 dB
-3dB bandwidth	10 MHz	N.A.	20.2 MHz	N.A.	N.A.
Central frequency	5.5 GHz	237.8 MHz/ 493.7 MHz	2.1 GHz	1.625 GHz/ 2.25 GHz	5.64 GHz
Operating temperature	-55°C +125°C	N.A.	N.A.	N.A.	N.A.
Obs.		Delay lines /Fe-doped GaN on sapphire	Resonator on membrane	GaN/ sapphire	Delay line GaN/Si


Reported results are beyond the state of the art for SAW on GaN/Si based band pass filters

- [1] Y. Fan et. al., "Surface acoustic waves in semiinsulating Fe-doped GaN films grown by hydride vapor phase epitaxy", Applied Physics Letters, 105, 062108 (2014)
- [2] A. Ansari et. al, "Gallium nitride-on-silicon micromechanical overtone resonators and filters", Proc. IEEE Int. Electron Devices Meeting (IEDM), 20.3.1–20.3.4, (2011)
- [3] T Palacios et. al, "High frequency SAW devices on AlGaN: Fabrication, Characterization and integration with optoelectronics", IEEE Ultrasonics
 Symposium, 2002
- [4] A Muller, et al. "SAW devices manufactured on GaN/Si for frequencies beyond 5 GHz" IEEE Electron Devices Lett. Vol. 31, pp 1398-1400, Dec 2010

- Compact (3x0.8 mm²) monolithic integrated SAW-BPF operating @ 5.5 GHz
 - 10 dB IL; 20 dB rejection; 10 MHz -3dB BW
- SAW-BPF on GaN/Si
 - monolithic integration of active devices (HEMTs) possible
 - can be used in harsh environments and extreme temperature conditions

Thank you for your attention!